Acta Cryst. (1999). C55, 1760-1762

Yttrium sodium oxalate tetrahydrate, $[Y(H_2O)]Na(C_2O_4)_2 \cdot 3H_2O$

THIERRY BATAILLE AND DANIEL LOUËR

Laboratoire de Chimie du Solide et Inorganique Moléculaire (CNRS, UMR 6511), Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes CEDEX, France. E-mail: daniel.louer@univ-rennes1.fr

(Received 24 May 1999; accepted 14 July 1999)

Abstract

Yttrium sodium oxalate tetrahydrate, $[Y(H_2O)]$ Na- $(C_2O_4)_2 \cdot 3H_2O$, was obtained from hydrothermal synthesis and its structure determined from single-crystal X-ray diffraction data. The structure consists of corrugated layers of ninefold-coordinated Y atoms linked together by oxalate groups. Na atoms and water molecules are intercalated between the layers through a complex hydrogen-bonding scheme.

Comment

The present structure determination is part of a systematic study of mixed oxalates, $LnM(C_2O_4)_2 \cdot nH_2O$, combining rare earths or yttrium elements (Ln) and monovalent cations (M). Among these compounds, only a few crystal structures have been reported, *e.g.* $Ln(NH_4)(C_2O_4)_2 \cdot H_2O$ (Ln = Y, Sm-Tm; McDonald & Spink, 1967), $[LnM(H_2O)_n](C_2O_4)_2 \cdot H_2O$ (M = Li, Ln = La-Gd, n = 1; M = Na, Ln = Ce-Nd, n = 2; Roméro *et al.*, 1995), YK(C_2O_4)_2 \cdot 4H_2O (Bataille, Auffrédic & Louër, 1999) and $[La(H_2O)_2]M(C_2O_4)_2 \cdot H_2O$ (M = K, NH₄; Bataille, Louër *et al.*, 1999).

 $[Y(H_2O)]Na(C_2O_4)_2\cdot 3H_2O$ was identified from X-ray powder diffraction data and the pattern was indexed with the dichotomy method program *DICVOL*91 (Boultif & Louër, 1991). This new compound is not isostructural with either the related yttrium ammonium and yttrium potassium phases or $[LnNa(H_2O)_2](C_2O_4)_2\cdot H_2O$ (Ln = Ce–Nd; Roméro *et al.*, 1995). Single-crystal diffraction data were used for the structure determination of the yttrium sodium compound.

The structure of the title compound (Fig. 1) consists of corrugated $[Y(C_2O_4)_2^-]_{\infty}$ layers, parallel to (001), and intercalated Na atoms and water molecules. The layers are built from four-membered $[Y(C_2O_4)]_4$ rings (Fig. 2). A similar layered-type structure has also been observed recently in $[La(H_2O)_2]M(C_2O_4)_2 \cdot H_2O$ (M = K, NH₄; Bataille, Louër *et al.*, 1999). The Y atoms are ninefold coordinated by eight oxalate O atoms in the form of an Archimedean antiprism monocapped by a water molecule. Such a coordination is frequently encountered in mixed yttrium oxalate compounds, e.g. in $YH(C_2O_4)_2 \cdot 3H_2O$ (Picard, 1993) and $Y(NH_4)(C_2O_4)_2 \cdot H_2O$ (McDonald & Spink, 1967). The mean Y—O distance [2.402 (4) Å; see Table 1] is in agreement with the values reported in the literature, e.g. 2.39(1) Å in the ammonium compound (McDonald & Spink, 1967) and the theoretical value (2.426 \AA) calculated by the bond-valence method (Brown, 1996) for vttrium bonded to nine O atoms. It is worth noting the elongated bond between the Y atom and the water molecule in each polyhedron, i.e. 2.470 (6) Å for Y1-OW2 and 2.481 (6) Å for Y2-OW1. The Na atoms are bonded to two oxalate O atoms and four water molecules in somewhat distorted octahedra. This Na coordination polyhedron is also observed in $[LnNa(H_2O)_2](C_2O_4)_2 \cdot H_2O$ (Ln = Ce-Nd; Roméro et al., 1995). The mean Na—O distance [2.488(6)Å] compares well with the value (2.465 Å) calculated by the bond-valence method. The four oxalate groups chelate the Y atoms. The bond distances and angles within each oxalate ligand [mean C-C distance 1.539(7) Å and mean C-O distance 1.252 (5) Å] agree with the values reported for oxalate compounds (see, for instance, Bataille, Auffrédic & Louër, 1999). The oxalate groups are planar, as shown by the mean atomic deviation from the least-squares plane of each oxalate, *i.e.* in the range 0.0090-0.0736 Å. The distances between the donor and acceptor atoms of the hydrogen bonds vary in the range 2.824 (9)-2.979 (7) Å (Table 2). Thus, it can be assumed that all hydrogen bonds are weak, since a strong interaction corresponds to a donor-acceptor distance of less than 2.7 Å (Brown, 1976).

Fig. 1. The structure of $[Y(H_2O)]Na(C_2O_4)_2 \cdot 3H_2O$ projected along the *b* axis showing the layers.

THIERRY BATAILLE AND DANIEL LOUËR

Fig. 2. Views of the environment of the (a) Y1, (b) Y2, (c) Nal and (d) Na2 atoms. Displacement ellipsoids are plotted at the 50% probability level. [Symmetry codes: (i) x - 1, y, z; (ii) x, 1 - y, $\frac{1}{2} + z$; (iii) x - 1, 1 + y, z; (iv) x, 1 + y, z; (v) 1 + x, y, z; (vi) x, 1 - y, $z - \frac{1}{2}$.]

Experimental

Single crystals of $[Y(H_2O)]Na(C_2O_4)_2 \cdot 3H_2O$ were obtained from $Y_2(C_2O_4)_3 \cdot 9H_2O$ (0.5 mmol), $Na_2C_2O_4$ (1 mmol) and water (10 ml) acidified at pH 1–2 with HNO₃. These components were sealed in a 23 ml Teflon-lined acid digestion bomb (Parr) and heated to 423 K for 1 d, followed by cooling to ambient temperature over several hours.

Crystal data

$[Y(H_2O)]Na(C_2O_4)_2 \cdot 3H_2O$	Mo $K\alpha$ radiation
$M_r = 360.005$	$\lambda = 0.71073 \text{ Å}$
Monoclinic	Cell parameters from 25
Pc	reflections
a = 8.623 (2) Å	$\theta = 6.069 - 11.484^{\circ}$
b = 8.6310(8) Å	$\mu = 5.498 \text{ mm}^{-1}$
c = 14.896(3) Å	T = 293 (2) K
$\beta = 102.848 (9)^{\circ}$	Plate
$V = 1080.9 (4) \text{ Å}^3$	$0.200 \times 0.125 \times 0.075 \text{ mm}$
Z = 4	Colourless
$D_x = 2.212 \text{ Mg m}^{-3}$	
D_m not measured	
Data collection	
Enraf–Nonius CAD-4	3204 reflections with
diffractometer	$I > 2\sigma(I)$

 $\theta/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.555$, $T_{max} = 0.662$ 4983 measured reflections 4733 independent reflections (plus 250 Friedel-related reflections)

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.042$
$wR(F^2) = 0.096$
S = 1.011
4983 reflections
374 parameters
Only coordinates of H atoms
refined
$w = 1/[\sigma^2(F_o^2) + (0.0464P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.015$

 $\theta_{max} = 34.93^{\circ}$ $h = 0 \rightarrow 13$ $k = 0 \rightarrow 13$ $l = -24 \rightarrow 23$ 3 standard reflections every 250 reflections frequency: 60 min intensity decay: 0.7%

 $\begin{aligned} \Delta \rho_{\text{max}} &= 1.27 \text{ e } \text{\AA}^{-3} \\ \Delta \rho_{\text{min}} &= -0.97 \text{ e } \text{\AA}^{-3} \\ \text{Extinction correction:} \\ SHELXL97 \\ \text{Extinction coefficient:} \\ 0.0008 (5) \\ \text{Scattering factors from} \\ International Tables for \\ Crystallography (Vol. C) \\ \text{Absolute structure:} \\ \text{Flack (1983)} \\ \text{Flack parameter} &= 0.071 (7) \end{aligned}$

Table 1. Selected bond distances (Å)

Y1—072	2.344 (4)	Y2-071 ¹¹	2.423 (5)
Y1—011	2.358 (4)	Y2-031	2.447 (4)
Y1-051	2.374 (4)	Y2—OW1 ¹¹	2.481 (6)
Y1-021	2.383 (4)	Na1—OW3 ^v	2.452 (8)
Y1	2.404 (5)	Na1—OW4	2.458 (7)
Y1-032	2.411 (4)	Na1—OW6 ^v	2.460 (7)
Y1-042	2.425 (4)	Na1—OW5	2.460 (7)
Y1-061	2.470 (4)	Na1-061 ^v	2.623 (5)
Y1—OW2	2.470 (6)	Nal—O31 ^v	2.627 (5)
Y2-041'	2.341 (4)	Na2—OW6	2.436 (7)
Y2—O22 ⁱⁱ	2.365 (4)	Na2—O81 ^{vi}	2.438 (5)
Y2—O52 ⁱⁱⁱ	2.366 (5)	Na2—OW3	2.446 (6)
Y2-062 ¹	2.373 (4)	Na2—011	2.445 (5)
Y2-081	2.393 (4)	Na2—OW1	2.499 (6)
Y2-012 ^{iv}	2.413 (4)	Na2—OW2	2.512(7)

Symmetry codes: (i) x - 1, y, z; (ii) $x, 1 - y, \frac{1}{2} + z$; (iii) x - 1, 1 + y, z; (iv) x, 1 + y, z; (v) 1 + x, y, z; (vi) $x, 1 - y, z - \frac{1}{2}$.

Table 2. Hydrogen-bonding geometry (Å, °)

$D - H \cdot \cdot \cdot A$	D—H	H···A	$D \cdot \cdot \cdot A$	$D = \mathbf{H} \cdot \cdot \cdot \mathbf{A}$			
OW1—H11 · · · OW7 ⁱ	0.958 (12)	1.96(3)	2.887 (9)	162 (7)			
OW1—H12· · · OW4 ⁿ	0.963 (12)	1.95 (4)	2.824 (9)	150 (7)			
OW2—H21· · · OW8	0.953 (12)	1.938 (16)	2.887 (8)	173 (5)			
O <i>W</i> 2—H22···O <i>W</i> 5	0.954 (12)	1.884 (15)	2.833 (7)	173 (5)			
OW3—H31···O62 [™]	0.963 (12)	2.09(3)	2.897 (7)	141 (4)			
OW3—H32···O72	0.961 (12)	2.37 (7)	2.960 (8)	119 (5)			
OW4—H41 · · · OW8 ^{iv}	0.958 (12)	2.06(3)	2.963 (7)	157 (6)			
OW4—H42· · · O52 [™]	0.955 (12)	1.893 (19)	2.841 (7)	172 (8)			
OW5—H51···OW7	0.963 (12)	2.03 (3)	2.951 (7)	160 (6)			
OW5—H52···O21 [∞]	0.966 (12)	1.862 (13)	2.825 (6)	175 (2)			
OW6—H61···O41*	0.960(12)	2.21 (4)	2.979 (7)	136 (5)			
O₩6—H62···O32 ^{v1}	0.957 (12)	2.44 (4)	2.901 (7)	109 (3)			
OW7—H71···O71™	0.961 (12)	2.14 (6)	2.890 (7)	134 (7)			
OW7—H72···O51 [™]	0.959(12)	1.97 (2)	2.908 (6)	165 (6)			
OW8H81····O42 ⁱⁱⁱ	0.963 (12)	1.925 (15)	2.884 (6)	174 (6)			
O <i>W</i> 8—H82· · ·O22	0.958 (12)	1.98 (2)	2.921 (7)	167 (7)			
Symmetry codes: (i) $x, y = 1, z$; (ii) $x = 1, y = 1, z$; (iii) $x, 1 = y, z = \frac{1}{2}$; (iv) $x = 1, y = 1, z = \frac{1}{2}$; (v) $x = 1, y = \frac{1}{2}$; (v) $x = 1, y = \frac{1}{2}$; (v) $x = 1, y = \frac{1}{2}$; (v) $x = \frac{1}{2}$;							
$(1), x, 1 \neq y, z, (y), x = 1, 1 = y, z = \frac{1}{2}, (y), x = 1, y, z$							

All 16 H atoms were found from a difference Fourier synthesis. They were refined with soft constraints applied on the distances to their water O atoms [0.960(12) Å] and

to the nearest Na atoms. The largest residuals in the final difference Fourier map were 1.27 e Å⁻³ at 1.01 Å from O21 and -0.97 e Å⁻³ at 1.21 Å from Y1. For comparison, the electron densities obtained during the structure determination were 6.64 e Å⁻³ for OW8 and 0.66 e Å⁻³ for H82. The isotropic displacement parameters of the H atoms were fixed equal to twice the U_{eq} value of their parent O atom.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEP-3 (Farrugia, 1997). Software used to prepare material for publication: SHELXL97.

The authors thank Dr S. Golhen for his help with the data collection.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GS1049). Services for accessing these data are described at the back of the journal.

References

- Bataille, T., Auffrédic, J. P. & Louër, D. (1999). Chem. Mater. 11, 1559-1567.
- Bataille, T., Louër, M., Auffrédic, J. P. & Louër, D. (1999). In preparation.
- Boultif, A. & Louër, D. (1991). J. Appl. Cryst. 24, 987-993.
- Brown, I. D. (1976). Acta Cryst. A32, 24-31.
- Brown, I. D. (1996). J. Appl. Cryst. 29, 479-480.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- McDonald, T. R. R. & Spink, J. M. (1967). Acta Cryst. 23, 944–949. North, A. C. T., Philips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Picard, V. (1993). PhD thesis, Université de Bourgogne, France.
- Roméro, S., Mosset, A. & Trombe, J. C. (1995). Eur. J. Solid State Inorg. Chem. 32, 1053–1063.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1999). C55, 1762-1764

1,1'-Diacetylferrocene bis(thiosemicarbazone) monohydrate

Wen Xiao,^a Zhong-Lin Lu,^a Rui-Ying Li,^a Cheng-Yong Su,^a Bei-Sheng Kang,^a S. Shanmuga Sundara Raj^b and Hoong-Kun Fun^b

^aInstitute of Physical Chemistry, School of Chemistry & Chemical Engineering, Zhongshan University, Guangzhou 510275, People's Republic of China, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. E-mail: hkfun@usm.my

(Received 12 April 1999; accepted 29 June 1999)

Abstract

X-ray analysis reveals that both thiosemicarbazone groups of the title compound, $[Fe(C_8H_{10}N_3S)_2]$ ·H₂O, are in the keto tautomeric form and that the configuration of the azomethine C=N double bond is *E*. The two cyclopentadienyl rings are parallel and nearly eclipsed. The crystal structure is stabilized by extensive intra- and intermolecular hydrogen bonding involving the water molecule and the thiosemicarbazone moieties.

Comment

Ferrocene and its derivatives have aroused much interest recently as redox-active entities, with potential applications in areas such as materials for molecular electronics (Houlton *et al.*, 1992) and as biologically active compounds (Neuse *et al.*, 1988). In these contexts, considerable interest has been shown in the thio-Schiff base compounds containing a ferrocenyl group, which can coordinate readily with transition metals to give stable complexes (Garg & Kapur, 1990; Ismail, 1997) and which might exhibit large non-linear optical efficiency (Tian *et al.*, 1998). As part of our work on exploring functional coordination complexes for non-linear optical materials, we report here the crystal structure of 1,1'diacetylferrocene bis(thiosemicarbazone) monohydrate, (I).

The bond lengths in the two thiosemicarbazone groups show slight differences and the C=N, N-N, N- Csp^2 and C=S bond distances are similar to